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Abstract We present exact results on the partition function of the q-state Potts model
on various families of graphs G in a generalized external magnetic field that favors or
disfavors spin values in a subset Is = {1, . . . , s} of the total set of possible spin values,
Z(G,q, s, v,w), where v and w are temperature- and field-dependent Boltzmann variables.
We remark on differences in thermodynamic behavior between our model with a generalized
external magnetic field and the Potts model with a conventional magnetic field that favors
or disfavors a single spin value. Exact results are also given for the interesting special case
of the zero-temperature Potts antiferromagnet, corresponding to a set-weighted chromatic
polynomial Ph(G,q, s,w) that counts the number of colorings of the vertices of G subject
to the condition that colors of adjacent vertices are different, with a weighting w that favors
or disfavors colors in the interval Is . We derive powerful new upper and lower bounds on
Z(G,q, s, v,w) for the ferromagnetic case in terms of zero-field Potts partition functions
with certain transformed arguments. We also prove general inequalities for Z(G,q, s, v,w)

on different families of tree graphs. As part of our analysis, we elucidate how the field-
dependent Potts partition function and weighted-set chromatic polynomial distinguish, re-
spectively, between Tutte-equivalent and chromatically equivalent pairs of graphs.

Keywords Potts model in an external field · Weighted-set graph colorings

1 Introduction

In this paper we continue our study of the q-state Potts model in a generalized exter-
nal magnetic field that favors or disfavors a certain subset of spin values in the interval
Is = {1, . . . , s}, on various families of graphs G [1, 4]. We denote a graph G = (V ,E) by

R. Shrock (�) · Y. Xu
C. N. Yang Institute for Theoretical Physics, State University of New York, Stony Brook, NY 11794,
USA
e-mail: robert.shrock@stonybrook.edu

Y. Xu
e-mail: yan.xu@stonybrook.edu

mailto:robert.shrock@stonybrook.edu
mailto:yan.xu@stonybrook.edu


910 R. Shrock, Y. Xu

its vertex set V and its edge (= bond) set E. The numbers of vertices, edges, and connected
components of G are denoted, respectively, by n(G) ≡ n, e(G), and k(G). In thermal equi-
librium at temperature T , the partition function for the Potts model on the graph G in this
field is given by Z = ∑

{σi } e
−βH with the Hamiltonian

H = −J
∑

〈ij 〉
δσi ,σj

−
q∑

p=1

Hp

∑

�

δσ�,p, (1.1)

where i, j , � label vertices of G, σi are classical spin variables on these vertices, taking
values in the set Iq = {1, . . . , q}, β = (kBT )−1, 〈ij 〉 denote pairs of adjacent vertices, J is
the spin-spin interaction constant, and

Hp =
{

H for 1 ≤ p ≤ s,

0 for s + 1 ≤ p ≤ q.
(1.2)

Thus, for positive (negative) H , the Hamiltonian favors (disfavors) spin values in the in-
terval Is . This is a generalization of a conventional magnetic field, which would favor or
disfavor one particular spin value. We denote I⊥

s as the orthogonal complement of Is in Iq ,
i.e., I⊥

s = {s + 1, . . . , q}, and we use the notation

K = βJ, h = βH, y = eK, v = y − 1, w = eh. (1.3)

The physical ranges of v are v ≥ 0 for the Potts ferromagnet, and −1 ≤ v ≤ 0 for the Potts
antiferromagnet.

It is very useful to have a general graph-theoretic formula for Z that does not make any
explicit reference to the spins σi or the summation over spin configurations, but instead
expresses this function as a sum of terms arising from the spanning subgraphs G′ ⊆ G. This
formula was derived and analyzed in Refs. [3, 4] and is

Z(G,q, s, v,w) =
∑

G′⊆G

ve(G′)
k(G′)∏

i=1

un(G′
i
) (1.4)

where

um = q − s + swm = q + s(wm − 1). (1.5)

This generalizes a spanning subgraph formula for Z in the case s = 1 due to F.Y. Wu [5, 6].
In the special case H = 0, (1.4) reduces to the cluster formula for the zero-field Potts model
partition function [7, 8], denoted Z(G,q, v), namely

Z(G,q, v) =
∑

G′⊆G

ve(G′)qk(G′). (1.6)

The original definition of the Potts model, (1.1), requires q to be in the set of positive inte-
gers N+ and s to be a non-negative integer. These restrictions are removed by (1.4). Further-
more, (1.4) shows that Z is a polynomial in the variables q , s, v, and w, hence our notation
Z(G,q, s, v,w). If two graphs G1 and G2 are disjoint, then Z(G1 ∪ G2) = Z(G1)Z(G2)

so, without loss of generality, we will usually restrict to connected G (although (1.4) leads
to consideration of disconnected spanning subgraphs G′).
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An important special case is the zero-temperature antiferromagnet, K = −∞, i.e., v =
−1, and we denote

Ph(G,q, s,w) ≡ Z(G,q, s,−1,w). (1.7)

In this case the only contributions to Z are those such that no two adjacent spins have the
same value. Thus, Ph(G,q, s,w) counts the number of proper q-colorings of the vertices
of G with a vertex weighting that either disfavors (for 0 ≤ w < 1) or favors (for w > 1)
colors in the interval Is . Here, a proper q-coloring is defined as an assignment of q colors
to the vertices of a graph G subject to the condition that no two adjacent vertices have the
same color. We have denoted these coloring problems as DFSCP and FSCP for disfavored or
favored weighted-set graph vertex coloring problems [4]. The associated set-weighted chro-
matic polynomial constitutes a generalization of the conventional (unweighted) chromatic
polynomial, which counts the number of proper q-colorings of a graph G. Recent reviews
of chromatic polynomials include [9–11].

As is evident from the discussion above, the model defined by (1.1) with (1.2) is of in-
terest both in the context of statistical mechanics and in the context of mathematical graph
theory. It also has an application to certain frequency allocation problems in electrical engi-
neering [4].

2 Some Basic Properties of Z(G,q, s,w,v) and Ph(G,q, s,w)

In this section we discuss some basic results about Z(G,q, s, v,w) and Ph(G,q, s,w) that
will be needed in our work. Applying the factorization

wm − 1 = (w − 1)

m−1∑

j=0

wj (2.1)

in (1.4) with m = n(G′
i ), one sees that the variable s enters in Z(G,q, s, v,w), and

Ph(G,q, s,w) only in the combination

t = s(w − 1). (2.2)

Since Is ⊆ Iq , whence 0 ≤ s ≤ q , and since w ≥ 0 for any real external field H , it follows
that

um = q + s(wm − 1) ≥ 0. (2.3)

Therefore, for the ferromagnetic case v ≥ 0, each term in the sum over spanning subgraphs
in (1.4) is nonnegative. For a given spanning subgraph G′ ⊆ G, consisting of a sum of k(G′)
connected components G′

i , where i = 1, . . . , k(G′), the contribution to Z(G,q, s, v,w)

in (1.4) is the number of spanning subgraphs G′ of a particular topology, NG′ , times
ve(G′) ∏k(G′)

i=1 un(G′
i
), which has the generic form

NG′ve(G′)
k(G′)∏

j=1

un(G′
j
). (2.4)

Here

k(G′)∑

i=1

n(G′
i ) = n. (2.5)
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Since some of the components G′
i and G′

j may have the same number of vertices, n(G′
i ) =

n(G′
j ), the product in (2.4) can also be written as

∏
j (urj )

pj , where rj takes on certain
values in the set {1, . . . , n} and the exponents pj are integers taking on certain values in the
set {1, . . . , k(G′)}. As a consequence of (2.5), these satisfy the relation

∑

j

pj rj = n. (2.6)

Note that um satisfies the identity

um(q, s,w) = wmum(q, q − s,w−1) (2.7)

where we have written um as a function of its three arguments q , s, w. A given spanning
subgraph G′ corresponds to a partition of the total set of vertices depending on which edges
are present and which are absent. The sum of the coefficients NG′ of the various terms
NG′

∏
j (urj )

pj that multiply a given power ve(G′) in (1.4) is
(

e(G)

e(G′)
)

since this is the number
of ways of choosing e(G′) edges out of a total of e(G) edges. These satisfy the relation

e(G)∑

e(G′)=0

(
e(G)

e(G′)

)

= 2e(G). (2.8)

This reflects the fact that there are 2e(G) spanning subgraphs of G, as follows from the
property that these are classified by choosing whether each edge is present or absent, and
there are 2e(G) such choices. In mathematical graph theory, a loop is defined as an edge
that connects a vertex to itself and a cycle is a closed circuit along the edges of G. In
the following we restrict to loopless graphs. For any such n-vertex graph G, the terms in
Z(G,q, s, v,w) proportional to v0, v1, and ve(G) can be given in general, as

Z(G,q, s, v,w) = un
1 + e(G)vu2u

n−2
1 + · · · + ve(G)un. (2.9)

The partition function Z(G,q, s, v,w) satisfies the following identities [1–4]

Z(G,q, s, v,1) = Z(G,q,0, v,w) = Z(G,q, v), (2.10)

(where, as above, Z(G,q, v) is the zero-field Potts partition function),

Z(G,q, s, v,w) = wnZ(G,q, q − s, v,w−1), (2.11)

(c.f. (2.7)) and

Z(G,q, q, v,w) = wnZ(G,q, v). (2.12)

Setting v = −1 in these identities yields the corresponding relations for Ph(G,q, s,w); for
example, (2.11) yields

Ph(G,q, s,w) = wnPh(G,q, q − s,w−1). (2.13)

There are a number of equivalent ways of writing Z(G,q, s, v,w) as sums of powers of a
given variable with coefficients depending on the rest of the variables in the set {q, s, v,w}.
The basic spanning subgraph formula (1.4) is a sum of powers of v. A second convenient
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form in which to express Z(G,q, s, v,w) is as a sum of powers of w with coefficients,
denoted as βZ,G,j (q, s, v), which are polynomials in q , s, and v:

Z(G,q, s, v,w) =
n∑

j=0

βZ,G,j (q, s, v)wj . (2.14)

The symmetry (2.11) implies the following relation among the coefficients:

βZ,G,j (q, s, v) = βZ,G,n−j (q, q − s, v) for 0 ≤ j ≤ n. (2.15)

For the special case v = −1, we write

Ph(G,q, s,w) =
n∑

j=0

βG,j (q, s)wj , (2.16)

where

βG,j (q, s) ≡ βZ,G,j (q, s,−1). (2.17)

From (2.15), we have

βG,j (q, s) = βG,n−j (q, q − s) for 0 ≤ j ≤ n. (2.18)

We have proved further that [4]

βZ,G,n(q, s, v) = Z(G, s, v) (2.19)

and

βZ,G,0(q, s, v) = Z(G,q − s, v), (2.20)

so that for v = −1, βG,0(q, s) = P (G,q − s) and βG,n(q, s) = P (G, s). Various general
factorization results were also given in Ref. [4] for these coefficients βZ,G,j (q, s, v) and
βG,j (q, s), including the following:

For 1 ≤ j ≤ n, βZ,G,j (q, s, v) and βG,j (q, s) contain a factor of s. (2.21)

For 0 ≤ j ≤ n − 1, βZ,G,j (q, s, v) and βG,j (q, s) contain a factor (q − s). (2.22)

The minimum number of colors needed for a proper q-coloring of a graph G is the chromatic
number, χ(G). A further factorization property is that

βG,n(q, s) contains the factor
χ(G)−1∏

j=0

(s − j), (2.23)

and

βG,0(q, s) contains the factor
χ(G)−1∏

j=0

(q − s − j). (2.24)
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A third useful type of expression for Z(G,q, s, v,w) is

Z(G,q, s, v,w) =
n∑

j=0

αZ,G,n−j (s, v,w)qn−j . (2.25)

With the notation

αG,n−j (s,w) ≡ αZ,G,n−j (s,−1,w), (2.26)

we then have

Ph(G,q, s,w) =
n∑

j=0

αG,n−j (s,w)qn−j . (2.27)

This form is particularly convenient for comparisons with the conventional unweighted
chromatic polynomial P (G,q) = Ph(G,q,0,w) = Ph(G,q, s,1).

For a graph G, the number of linearly independent cycles, c(G) (the cyclotomic number),
satisfies the relation

c(G) = e(G) + k(G) − n(G). (2.28)

A connected n-vertex graph with no cycles is a tree graph, Tn, while a general graph with
no cycles, which can be disconnected, is called a forest graph. We denote a graph G with no
cycles as Gnc and define

q ′ ≡ q

s
, v′ ≡ v

s
. (2.29)

In Ref. [4] we proved that for such a cycle-free graph Gnc ,

Z(Gnc, q, s, v,w) = snZ(Gnc, q
′,1, v′,w). (2.30)

This relation allows us to obtain Z(Gnc, q, s, v,w) from Z(Gnc, q,1, v,w) for any cycle-
free graph Gnc . In particular, all of the results for Z(G,q, s, v,w) for various types of tree
graphs calculated in Ref. [3] for s = 1 can be used to obtain the analogous results for gen-
eral s.

For a graph G, let us denote the graph obtained by deleting an edge e ∈ E as G − e

and the graph obtained by deleting this edge and identifying the two vertices that had been
connected by it as G/e. The Potts model partition function satisfies the deletion-contraction
relation (DCR)

Z(G,q, v) = Z(G − e, q, v) + vZ(G/e, q, v), (2.31)

and, setting v = −1, the chromatic polynomial thus satisfies the DCR

P (G,q) = P (G − e, q) − P (G/e, q). (2.32)

However, as we showed in Ref. [4], in general, neither Z(G,q, s, v,w) nor Ph(G,q, s,w)

satisfies the respective deletion-contraction relation, i.e., in general, Z(G,q, s,w,v) is not
equal to Z(G − e, q, s,w,v) + vZ(G/e, q, s,w,v). The only cases where this deletion-
contraction relation holds are for the values s = 0, w = 1, and w = 0 where Z(G,q, s, v,w)

reduces to a zero-field Potts model partition function.
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3 Upper and Lower Bounds on Z(G,q, s, v,w) for v ≥ 0

In this section we derive powerful new two-sided upper and lower bounds for the generalized
field-dependent partition function of the ferromagnetic (v ≥ 0) Potts model, Z(G,q, s, v,w)

on an arbitrary graph G in terms of the zero-field Potts model partition functions Z(G,u1, v)

and Z(G,u1/w,v), where u1 = q + s(w − 1) (c.f. (1.5)). These are especially useful be-
cause the zero-field Potts model partition function is considerably easier to calculate than
Z(G,q, s, v,w). Throughout this section, it is understood that q ≥ 0, 0 ≤ s ≤ q , and v ≥ 0.
The former two conditions are obvious for our present analysis, while the latter will often
be indicated explicitly.

We first derive a lower bound for Z(G,q, s, v,w) for the range w ≥ 1. To begin, we
observe that, from its definition in (1.5) and factorization property (2.1), um satisfies

um = q + s(wm − 1) = q + s(w − 1)

m−1∑

j=0

wj

≥ q + s(w − 1) = u1 for w ≥ 1. (3.1)

Substituting this inequality into the expression for Z(G,q, s, v,w) in (1.4) in terms of con-
tributions from spanning subgraphs G′ ⊆ G, we have, for the same conditions

Z(G,q, s, v,w) =
∑

G′⊆G

ve(G′)
k(G′)∏

i=1

un(G′
i
)

≥
∑

G′⊆G

ve(G′)(u1)
k(G′) for v ≥ 0 and w ≥ 1. (3.2)

But the expression on the second line of (3.2) is just the zero-field Potts model partition
function given in (1.6) with its argument q replaced by u1, namely Z(G,u1, v). Hence, we
have derived a lower bound on Z(G,q, s, v,w):

Z(G,q, s, v,w) ≥ Z(G,u1, v) for v ≥ 0 and w ≥ 1. (3.3)

For the interval 0 ≤ w ≤ 1, the inequality (3.1) is reversed:

um ≤ u1 for 0 ≤ w ≤ 1, (3.4)

and thus (3.2) is replaced by

Z(G,q, s, v,w) ≤
∑

G′⊆G

ve(G′)(u1)
k(G′) for v ≥ 0 and 0 ≤ w ≤ 1. (3.5)

Therefore, we obtain a second inequality, which is an upper bound:

Z(G,q, s, v,w) ≤ Z(G,u1, v) for v ≥ 0 and 0 ≤ w ≤ 1. (3.6)

To derive two-sided inequalities, we make use of the symmetry relation (2.11), which
maps the interval w ≥ 1 to the interval 0 ≤ w ≤ 1 and vice versa. Let us start with the
case w ≥ 1, for which we have proved the lower bound (3.3). Now, from the symmetry
relation (2.11) we know that Z(G,q, s, v,w) = wnZ(G,q, ŝ, v, ŵ) where ŝ ≡ q − s and
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ŵ ≡ w−1. Since ŵ ∈ [0,1], we can apply our upper bound (3.6) to Z(G,q, ŝ, v, ŵ), getting
the inequality

Z(G,q, ŝ, v, ŵ) ≤ Z(G, û1, v), (3.7)

where

û1 ≡ q + ŝ(ŵ − 1) = q + (q − s)(w−1 − 1) = u1

w
. (3.8)

Combining (3.7) with (3.3), we derive the two-sided inequality

Z(G,u1, v) ≤ Z(G,q, s, v,w) ≤ wnZ

(

G,
u1

w
,v

)

for v ≥ 0 and w ≥ 1. (3.9)

For the interval 0 ≤ w ≤ 1, by the same type of reasoning, we extend our upper bound (3.6)
to the two-sided inequality

wnZ

(

G,
u1

w
,v

)

≤ Z(G,q, s, v,w) ≤ Z(G,u1, v) for v ≥ 0 and 0 ≤ w ≤ 1. (3.10)

As two-sided inequalities, these are powerful restrictions on the generalized field-dependent
Potts model partition function in terms of zero-field Potts model partition functions with q

replaced by u1 and u1/w.
We next prove some factorization properties of the upper and lower differences in these

two-sided inequalities. First, if w = 1, then since Z(G,q, s, v,1) = Z(G,q, v) and u1 = q ,
it follows that the two-sided inequalities (3.10) and (3.9) reduce to equalities, i.e., both
the upper and lower differences vanish. Second, if v = 0, then the only contributions in the
respective equations (1.4) and (1.6) are from the spanning subgraph with no edges (called the
null graph, Nn), so Z(G,q, s,0,w) = (u1)

n, and Z(G,q,0) = qn, whence Z(G,u1,0) =
(u1)

n and wnZ(G,u1/w,0) = (u1)
n. Hence, again, in this v = 0 case, the inequalities (3.10)

and (3.9) reduce to equalities and the upper and lower differences vanish. Third, if s = 0,
then Z(G,q,0, v,w) = Z(G,q, v) and u1 = q , so that Z(G,u1, v) = Z(G,q, v). Hence, if
s = 0, then the lower difference in (3.9) and the upper difference in (3.10) vanish. Fourth, if
w = 0, then Z(G,q, s, v,0) = Z(G,q − s, v) and u1 = q − s, so Z(G,u1, v) = Z(G,q −
s, v); therefore, again, the lower difference in (3.9) and the upper difference in (3.10) vanish.
Together, these four results prove that the difference

Z(G,q, s, v,w) − Z(G,u1, v) contains the factor w(w − 1)sv. (3.11)

Fifth, if s = q , then Z(G,q, q, v,w) = wnZ(G,q, v) and u1 = qw, so wnZ(G,u1/w,v) =
wnZ(G,q, v). Hence, if s = q , then the upper difference in (3.9) and the lower difference in
(3.10) vanish. Combining this with the first two results above, we have shown that

wnZ

(

G,
u1

w
,v

)

− Z(G,q, s, v,w) contains the factor (w − 1)(q − s)v. (3.12)

It is also useful to characterize the difference between the zero-field Potts model partition
functions that constitute the upper and lower bounds in these two-sided inequalities (3.9)
and (3.10). For an arbitrary graph G, we have

wnZ

(

G,
u1

w
,v

)

− Z(G,u1, v) =
∑

G′⊆G

ve(G′)(u1)
k(G′)

[
wn(G)−k(G′) − 1

]
, (3.13)
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where G′ is a spanning subgraph of G. Now the right-hand side of (3.13) is nonzero only if
G has at least one edge, and, in this case, the only nonvanishing contributions have n(G) −
k(G′) ≥ 1. It follows that

wnZ

(

G,
u1

w
,v

)

− Z(G,u1, v) contains a factor vu1(w − 1). (3.14)

It is worthwhile to give some illustrations of these two-sided inequalities (3.9) and (3.10).
We first do this for tree graphs. For any n-vertex tree graph Tn, if w ≥ 1, then the inequality
(3.9) reads

u1(u1 + v)n−1 ≤ Z(Tn, q, s, v,w) ≤ u1(u1 + wv)n−1 for v ≥ 0 and w ≥ 1, (3.15)

where we have used Z(Tn, q, v) = q(q +v)n−1. If w ∈ [0,1], then the inequality (3.10) reads

u1(u1 + wv)n−1 ≤ Z(Tn, q, s, v,w) ≤ u1(u1 + v)n−1 for v ≥ 0 and 0 ≤ w ≤ 1. (3.16)

(This example also shows how the apparent singularity at w = 0 arising from the u1/w

argument in Z(G,u1/w,v) on the left-hand side of the inequality (3.10) is removed by
the wn factor, yielding a nonsingular expression.) One gains further insight by calculating
the differences between the polynomials that constitute the upper bound, the middle term,
Z(Tn, q, s,w,v), and the lower bound for various tree graphs. For the path graph L2 and
w ≥ 1, the differences that enter in the two-sided inequality (3.15) are

u1(u1 + wv) − Z(L2, q, s, v,w) = (w − 1)(q − s)v ≥ 0 (3.17)

and

Z(L2, q, s, v,w) − u1(u1 + v) = w(w − 1)sv ≥ 0. (3.18)

For w ∈ [0,1] the differences that enter in (3.16) are obvious reversals of these, viz., u1(u1 +
v)−Z(L2, q, s, v,w) = w(1−w)sv ≥ 0 and Z(L2, q, s, v,w)−u1(u1 +wv) = (1−w)(q−
s)v ≥ 0. For the path graph L3 and w ≥ 1, the differences in (3.15) are

u1(u1 + wv)2 − Z(L3, q, s, v,w) = (w − 1)(q − s)v
[
2u1 + v(w + 1)

]
≥ 0 (3.19)

and

Z(L3, q, s, v,w) − u1(u1 + v)2 = w(w − 1)sv
[
2u1 + v(w + 1)

]
≥ 0, (3.20)

and similarly for w ∈ [0,1].
Among n-vertex tree graphs, the star graph Sn has a particularly simple field-dependent

Potts partition function, which was given in Ref. [4] and is derived by a direct evaluation of
the general formula (1.4) (for any v):

Z(Sn, q, s, v,w) =
n−1∑

j=0

(
n − 1

j

)

vjuj+1u
n−1−j

1

= (q − s)
[
q + s(w − 1) + v

]n−1 + sw
[
q + s(w − 1) + wv

]n−1
. (3.21)
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Here j is the number of edges in a given spanning subgraph G′, and the numerical prefactor(
n−1
j

)
in the first line of (3.21) is the number of ways of choosing j edges out of the total

number of edges, n − 1, in Sn. For v ≥ 0, substituting this result (3.21) into the two-sided
inequalities (3.15) and (3.16), we can derive general formulas for the respective upper and
lower differences. If w ≥ 1 we find, for the lower difference in (3.15),

Z(Sn, q, s, v,w) − u1(u1 + v)n−1 = sw
[
(u1 + wv)n−1 − (u1 + v)n−1

]

= sw

n−1∑

j=0

(
n − 1

j

)

(u1)
n−1−j vj (wj − 1)

= sw(w − 1)v

n−1∑

j=1

(
n − 1

j

)

(u1)
n−1−j vj−1

[
j−1∑

�=0

w�

]

≥ 0. (3.22)

In the same way, if w ∈ [0,1], then the upper difference u1(u1 + v)n−1 −Z(Sn, q, s, v,w) in
(3.16) is given by minus the right-hand side of (3.22). Similarly, if w ≥ 1, then for the upper
difference in (3.15) we calculate

u1(u1 + wv)n−1 − Z(Sn, q, s, v,w) = (q − s)
[
(u1 + wv)n−1 − (u1 + v)n−1

]

= (q − s)(w − 1)v

n−1∑

j=1

(
n − 1

j

)

(u1)
n−1−j vj−1

×
[

j−1∑

�=0

w�

]

≥ 0. (3.23)

Again, if w ∈ [0,1], then the lower difference Z(Sn, q, s, v,w) − u1(u1 + wv)n−1 in (3.16)
is given by minus the right-hand side of (3.23).

For the circuit graph Cn, if w ≥ 1, the inequality (3.15) reads Z(Cn,u1, v) ≤
Z(Cn, q, s,v,w) ≤ wnZ(Cn,u1/w,v). Using the fact that Z(Cn, q,v) = (q+v)n +(q−1)vn,
we can write this explicitly as

(u1 + v)n + (u1 − 1)vn ≤ Z(Cn, q, s, v,w) ≤ (u1 + wv)n + (u1 − w)wn−1vn. (3.24)

For C2 (which has a double edge), the differences that enter in this two-sided inequality are

w2Z(C2, u1/w,v) − Z(C2, q, s, v,w) = (q − s)(w − 1)v(v + 2) ≥ 0 (3.25)

and

Z(C2, q, s, v,w) − Z(C2, u1, v) = w(w − 1)sv(v + 2) ≥ 0. (3.26)

Similar illustrations of the general inequalities (3.15) and (3.16) can be given for Ln and Cn

with higher values of n and for other families of graphs.
For w ≥ 1, we can prove a lower bound on um that is stronger than (3.1). To do this, we

use the basic inequality that for real positive numbers ai , the arithmetic mean is greater than
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or equal to the geometric mean, i.e.,

1

n

n∑

j=1

aj ≥
[

n∏

j=1

aj

]1/n

(3.27)

(with equality only if aj = ak ∀ j, k). Applying this to the sum
∑m−1

j=0 wj that appears in the
factorization relation (2.1), we have, for all w ≥ 0,

m−1∑

j=0

wj ≥ m

[
m−1∏

j=0

wj

]1/m

. (3.28)

Now
∏m−1

j=0 wj = wp , where p = ∑m−1
j=1 j . Using the summation formula

∑n

j=1 j = n(n +
1)/2, we calculate that p = (m − 1)m/2. Hence, the inequality (3.28) for w ≥ 0 can be
written as

m−1∑

j=0

wj ≥ mw(m−1)/2. (3.29)

Since um = q + s(wm − 1) = q + s(w − 1)
∑m−1

j=1 wj , we can use the lower bound (3.29)
to obtain a stronger lower bound on um if w ≥ 1 (but not if w ∈ [0,1), since in that case
the prefactor (w − 1) is negative). Consequently, for w ≥ 1, substituting (3.29) into the
expression for um, we derive the lower bound

um = q + s(wm − 1) ≥ q + ms(w − 1)w(m−1)/2 for w ≥ 1. (3.30)

Clearly, this is an improvement over the lower bound (3.1). Substituting this result into (1.4)
with um = un(G′

i
), we thus obtain the following improved lower bound on Z(G,q, s, v,w)

for w ≥ 1 and the ferromagnetic range v ≥ 0 (where G′ is a spanning subgraph of G):

Z(G,q, s, v,w) ≥
∑

G′⊆G

ve(G′)
k(G′)∏

i=1

[
q + n(G′

i )s(w − 1)w(n(G′
i
)−1)/2

]
for w ≥ 1 and v ≥ 0.

(3.31)
Note, however, that in contrast with our previous lower bound (3.2), the right-hand side of
this inequality cannot, in general, be written in terms of a zero-field Potts model partition
function since the terms in the product depend explicitly on n(G′

i ).

4 Some Thermodynamic Properties

The zero-field Potts model Hamiltonian H and partition function Z are invariant under the
global transformation in which σi → gσi ∀i ∈ V , with g ∈ Sq , where Sq is the symmetric
(= permutation) group on q objects. In the presence of the generalized external field defined
in (1.2), this symmetry group of H and Z is reduced to the tensor product

Sq → Ss ⊗ Sq−s . (4.1)

This simplifies to the conventional situation in which the external field H favors or disfavors
only a single spin value if s = 1 or s = q − 1, in which case the right-hand side of (4.1) is
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Sq−1. For s in the interval

2 ≤ s ≤ q − 2, (4.2)

the general model of (1.1) and (1.2) exhibits properties that are interestingly different from
those of a q-state Potts model in a conventional magnetic field. For example, in the con-
ventional case, at a given temperature T , if H � |J |, the interaction with the external field
dominates over the spin-spin interaction, and if h = βH is sufficiently large, the spins tend
to be frozen to the single favored value. In contrast, here, at a given temperature T , provided
that s lies in the interval (4.2), if |H | � |J |, this effectively reduces the model to (i) an
s-state Potts model if H > 0, or (ii) a (q − s)-state Potts model if H < 0. In this limit, for
given values of q and s and a given graph (say a regular lattice), there are thus, in general,
four types of possible models, depending on both the sign of H and the sign of J . As an
illustration of this, let us consider the case q = 5, s = 2 on (the thermodynamic limit of) a
square lattice. For H = 0, the ferromagnetic version of the model has a first-order phase
transition, with spontaneous breaking of the S5 symmetry, at Kc = ln(1 + √

5) � 1.17,
while the antiferromagnetic version has no finite-temperature phase transition and is dis-
ordered even at T = 0 [6, 7]. For H > 0 and H � |J |, the theory reduces effectively to
a two-state Potts model, i.e., an Ising model. Because the square lattice is bipartite, there
is an elementary mapping that relates the ferromagnetic and antiferromagnetic versions of
the model, and, as is well known, both have a second-order phase transition, with sponta-
neous symmetry breaking of the S2 ≈ Z2 symmetry, at |Kc| = ln(1 + √

2) � 0.881 (where
K = βJ ), with thermal and magnetic critical exponents yt = 1, yh = 15/8, described by
the rational conformal field theory (RCFT) with central charge c = 1/2. For H < 0 and
|H | � |J |, the theory effectively reduces to a three-state Potts model. In the ferromagnetic
case, J > 0, this has a well-understood second-order phase transition, with spontaneous
symmetry breaking of the S3 symmetry, at Kc = ln(1 + √

3) � 1.01, with thermal and crit-
ical exponents yt = 6/5, yh = 28/15, described by a RCFT with central charge c = 4/5 [6,
7, 12]. In the antiferromagnetic case, J < 0, the model has no finite-temperature phase tran-
sition but is critical at T = 0 (without frustration), with nonzero ground-state entropy per
site S/kB = (3/2) ln(4/3) � 0.432 [6, 13].

In particular, an interesting difference with respect to the q-state Potts model with a
conventional external magnetic field appears in the case in which the spin-spin interaction is
antiferromagnetic, i.e., J < 0. In the conventional case, there is competition between the two
terms in the Hamiltonian, and resultant frustration. Here the situation is altered and depends
on the chromatic number χ(G) of the graph. If H > 0, then there is frustration if s < χ(G),
and this becomes increasingly severe as the temperature decreases, but if s ≥ χ(G), then
this frustration is absent, because it is possible to satisfy the antiferromagnetic short-range
ordering preferred by the spin-spin interaction while also satisfying the assignments of spin
values preferred by the interaction of spins with the external field. (Of course, the presence
of this field does have an effect in restricting the preferred range of values of the spins.) Sim-
ilarly, if H < 0, then there is frustration if (q − s) < χ(G) but not if (q − s) ≥ χ(G). As an
example, we may consider the case q = 5, s = 2 on (the thermodynamic limit of) a triangu-
lar lattice. For H > 0 with H � |J |, the model reduces to an Ising model, and (i) if J > 0,
this has a symmetry-breaking second-order phase transition at Kc = (1/2) ln 3 � 0.549, in
the same universality class as on the square lattice, while (ii) if J < 0, there is frustration
and, as a consequence, the model has no finite-temperature phase transition, but is critical at
T = 0, with nonzero ground-state entropy S/kB � 0.323 [14]. For H < 0 with |H | � |J |,
the model reduces to a three-state Potts model, and (iii) if J > 0, this has a symmetry-
breaking second-order phase transition at Kc = ln[cos(2π/9)+√

3 sin(2π/9)] � 0.631 [15],
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in the same universality class as on the square lattice; while (iv) if J < 0, it has a weakly
first-order symmetry-breaking phase transition at Kc � −1.59 [16, 17], with a completely
ordered ground state, reflecting the fact that the chromatic number of the triangular lattice
is χ(tri) = 3. The more general case where |H | is not � |J | encompasses a rich variety
of thermodynamic behavior depending on the signs of H and J , the ratio of |H/J |, the
values of q and s, the dimensionality of the lattice, and, in the antiferromagnetic case, the
type of d-dimensional lattice. Note that if J = 0, then (i) S/kB = ln s for H > 0, and (ii)
S/kB = ln(q − s) for H < 0.

Although a one-dimensional spin system (with short-ranged spin-spin interactions, as
is the case here) does not exhibit any finite-temperature phase transition, it can still serve
as a worthwhile illustration of some thermodynamic properties. A simple example of this
type is provided by our model on an infinite one-dimensional lattice, with either free or
periodic boundary conditions. We denote a reduced, dimensionless free energy per site as
f = limn→∞(1/n) lnZ. Then from our analysis above, we have, for the limits as n → ∞ of
the line and circuit graphs, {L} and {C},

f ({L}, q, s, v,w) = f ({C}, q, s, v,w) ≡ f1D(q, s, v,w) = ln(λZ,1,0,+), (4.3)

where λZ,1,0,+ is given below in (5.8). From this the various thermodynamic quantities such
as the internal energy, specific heat, entropy, etc. can be calculated. Also, from this, one can
obtain the function 
({G}, q, s,w) = limn→∞ Ph(Gn, q, s,w)1/n for the n → ∞ limits of
Gn = Ln, Cn. The function 
({G}, q, s,w) generalizes the ground state degeneracy per site
of the zero-temperature Potts antiferromagnet, W({G}, q) = limn→∞ P (G,q)1/n. We have


({L}, q, s,w) = 
({C}, q, s,w) ≡ 
1D(q, s,w) = (λZ,1,0,+)|
v=−1 . (4.4)

We note the following reductions of 
1D , which follow from the general identities given
above:


1D(q,0,w) = 
1D(q, s,1) = q − 1, (4.5)


1D(q, s,0) = q − s − 1, (4.6)

and


1D(q, q,w) = w(q − 1). (4.7)

With the ranges 0 ≤ s ≤ q and w ≥ 0 understood, ∂
1D/∂q ≥ 0 for the nontrivial interval
q ≥ 2, reflecting the greater freedom of color assignments with increasing q . Furthermore,
∂
1D/∂w ≥ 0, as is clear from the original Hamiltonian formulation in (1.1) and (1.2). The
derivative ∂
1D/∂s ≥ 0 if w ≥ 1, and ∂
1D/∂s ≤ 0 if 0 ≤ w ≤ 1, which follows from the
fact that the external field favors (disfavors) spin values in Is if w > 1 (w ∈ [0,1)). Plots of

1D as a function of q and w for fixed s are similar to the s = 1 results shown in Figs. 2–4
of Ref. [3], except that the minimal value of q allowed is now s instead of 1, and the line for
w = 0 is now 
({L}, q, s,0) = q − s − 1 rather than q − 2. We proceed to give exact results
for Z(G,q, s, v,w) and Ph(G,q, s,w) for several families of graphs.

5 Path Graph Ln

The path graph Ln is the graph consisting of n vertices with each vertex connected to the
next one by one edge. One may picture this graph as forming a line, and in the physics
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literature this is commonly called a line graph. We use the alternate term “path graph” here
because in mathematical graph theory the line graph L(G) of a graph G refers to a different
object (namely the graph obtained by an ismorphism in which one maps the edges of G

to the vertices of L(G) and connects these resultant vertices by edges if the edges of G

are connected to the same vertex of G). For n ≥ 2, the chromatic number is χ(Ln) = 2. In
[4] we gave some illustrative calculations of Z(Ln, q, s, v,w). Here we present a general
formula for this partition function. Let

TZ,1,0 =
(

q − s + v sw

q − s w(s + v)

)

(5.1)

H1,0 =
(

1 0
0 sw

)

(5.2)

ω1 =
(

q − s

1

)

(5.3)

and

s1 =
(

1

1

)

. (5.4)

Then

Z(Ln, q, s, v,w) = ωT
1 H1,0(TZ,1,0)

n−1s1 (5.5)

and Ph(Ln, q, s,w) = Z(Ln, q, s,−1,w). It is straightforward to verify that our result for
Z(Ln, q, s, v,w) satisfies the relation (2.30). We note that

det(TZ,1,0) = v(q + v)w, (5.6)

independent of s, and

Tr(TZ,1,0) = q − s + v + w(s + v). (5.7)

The eigenvalues of TZ,1,0 are the same as the eigenvalues with coefficients of degree d = 0
for the circuit graph Cn given in (5.3) of Ref. [4], namely

λZ,1,0,± = 1

2

[

q − s + v + w(s + v) ±
[
{q − s + v + w(s + v)}2 − 4vw(q + v)

]1/2
]

. (5.8)

Thus, we can also write

Z(Cn, q, s, v,w) = Tr[(TZ,1,0)
n] + (s − 1)(vw)n + (q − s − 1)vn. (5.9)

The graphs Ln, Cn, and, more generally, lattice strip graphs of some transverse width Ly

and length Lx = m are examples of recursive families of graphs, i.e., graphs Gm that have
the property that Gm+1 can be constructed by starting with Gm and adding a given graph
H or, if necessary, cutting and gluing in H . For these graphs, Z(Gm,q, s, v,w) has the
structure of a sum of coefficients that are independent of the length m multiplied by m’th
powers of some algebraic functions. The results for transfer matrices for the case s = 1 in
Ref. [2] elucidated this structure for s = 1, and our calculation of Z(Cn, q, s, v,w) in Ref.
[4] and Z(Ln, q, s, v,w) here elucidate this structure for general s. Note that, by (2.9), the
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term in Z(Cn, q, s, v,w) of highest order in v is vnun = [q + s(w − 1)
∑n−1

j=0 wj ]vn, part
of which gives rise to the last two terms in (5.9). We note that for s = 0 or w = 1, one can
check that our expressions for Z(Ln, q, s, v,w) and Z(Cn, q, s, v,w) simplify, respectively,
to Z(Ln, q, v) = q(q + v)n−1 and Z(Cn, q, v) = (q + v)n + (q − 1)vn. Going from the case
of sw(w − 1) = 0 to sw(w − 1) �= 0, Z(Ln, q, s, v,w) expands from a sum of one power to
a sum involving two powers, and Z(Cn, q, s, v,w) expands from a sum of two powers to a
sum of four powers.

As our exact solutions for Z(Ln, q, s, v,w) and Z(Cn, q, s, v,w) show, the field-
dependent Potts partition functions Z(G,q, s, v,w) do not, in general, have any common
factor. This contrasts with the case of the zero-field Potts partition function, which always
has an overall factor of q . Similarly, in the v = −1 special case defining the set-weighted
chromatic polynomial, the resultant polynomials Ph(G,q, s,w) do not, in general, have
a common factor. For special values of s, Ph(G,q, s,w) may reduce to a form with a
common factor. The case s = 0 (and the case w = 1) for which this reduces to the conven-
tional chromatic polynomial is well-known; in this case P (G,q) has, as a common factor,∏χ(G)−1

j=0 (q − j). Similarly, for s = q , Ph(G,q, q,w) has this common factor multipled by
wn. For the special case s = 1 and for a connected graph G with at least one edge, it was
shown in Ref. [3] that Ph(G,q,1,w) contains a factor (q − 1). However, it is not true that
for a special case such as s = 2, a connected graph G with at least one edge contains a factor
of (q − s). For example, using the elementary result

Z(L2, q, s, v,w) = s(s + v)w2 + 2s(q − s)w + (q − s)(q − s + v), (5.10)

one sees that Ph(L2, q,1,w) = (q − 1)(q − 2 + 2w), but Ph(L2, q,2,w) = 2w2 + 4(q −
2)w + (q − 2)(q − 3), which has no common factor.

6 Complete Graphs Kn

The complete graph Kn is the graph with n vertices such that each vertex is connected to
every other vertex by one edge. The chromatic number is χ(Kn) = n and the number of
edges is e(Kn) = (

n

2

)
. The (conventional, unweighted) chromatic polynomial is

P (Kn, q) =
n−1∏

j=0

(q − j). (6.1)

For our later calculations, we will need our previous result for Ph(Kn, q, s,w) from Ref.
[4], which we mention here. We introduce a symbol xθ ≡ xθ(x), where θ(x) is the step
function from R → {0,1} defined as θ(x) = 1 if x > 0 and θ(x) = 0 if x ≤ 0. Our result is
[4]

Ph(Kn, q, s,w) =
n∑

�=0

βKn,�(q, s)w� (6.2)

where

βKn,�(q, s) =
(

n

�

)[
(�−1)θ∏

i=0

(s − i)

][
(n−�−1)θ∏

j=0

(q − s − j)

]

. (6.3)



924 R. Shrock, Y. Xu

Here it is understood that if the upper index on either of the two products in (6.3) is negative,
that product is absent, so that the first product is absent for � = 0 and the second one is absent
for � = n. Note that

βKn,�(q, s) = βKn,n−�(q, q − s), (6.4)

in agreement with the general symmetry (2.18). Substituting this in (6.2) shows explicitly
that our result for Ph(Kn, q, s,w) satisfies the symmetry relation (2.13). Note that Kn is not
a recursive family of graphs, so one does not expect Ph(Kn, q, s,w) to have the form of a
sum of coefficients multiplied by powers of certain algebraic functions, and it does not, in
contrast to Ph(Gn, q, s,w) for recursive families Gn such as Cn or Ln.

The calculation of Ph(Kn, q, s,w) for the cases K1 and K2 = L2 are elementary. For
K3 = C3 our general formula (6.2) yields

Ph(K3, q, s,w) = P (K3, s)w
3 +3s(s−1)(q−s)w2 +3s(q−s)(q−s−1)w+P (K3, q−s)

(6.5)
while for K4 we have

Ph(K4, q, s,w) = P (K4, s)w
4 + 4s(s − 1)(s − 2)(q − s)w3

+ 6s(s − 1)(q − s)(q − s − 1)w2

+ 4s(q − s)(q − s − 1)(q − s − 2)w + P (K4, q − s). (6.6)

7 p-Wheel Graphs Wh(p) = Kp + Cn−p

The p-wheel graph Wh
(p)
n is defined as

Wh(p)
n = Kp + Cn−p, (7.1)

i.e., the join of the complete graph Kp with the circuit graph Cn−p . (Given two graphs G and
H , the join, denoted G + H , is defined as the graph obtained by joining each of the vertices
of G to each of the vertices of H ). (Here and below, no confusion should result from the use
of the symbol H for a graph and H for the external field; the meaning will be clear from
context.) The family of Wh

(p)
n graphs is a recursive family. For p = 1, Wh(1)

n is the wheel
graph. The central vertex can be regarded as forming the axle of the wheel, while the n − 1
vertices of the Cn−1 and their edges form the outer rim of the wheel. This is well-defined for
n ≥ 3, and in this range the chromatic number is χ(Whn) = 3 if n is odd and χ(Whn) = 4
if n is even. Although Kp is not defined for p = 0, we may formally define Wh(0)

n ≡ Cn. For
the zero-field case, i.e., for the usual, unweighted chromatic polynomial and for an arbitrary
graph G,

P (Kp + G,q) = P (Kp,q)P (G,q − p) = q(p)P (G,q − p), (7.2)

where q(m) is the falling factorial, defined as

q(m) =
m−1∏

j=0

(q − j). (7.3)

This result is a consequence of the fact that in assigning colors to the p vertices of Kp , one
must use p different colors, and then, because of the join condition, one must select from
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the other q − p colors to color the vertices of G. In particular, for Wh(p), this gives

P (Wh(p)
n , q) = P (Kp,q)P (Cn−p, q − p)

= q(p)

[
(q − 1 − p)n−p + (q − 1 − p)(−1)n−p

]
. (7.4)

Note that, for arbitrary p, this chromatic polynomial consists of the prefactor times the sum
of the (n − p)’th powers of NWh(p),λ = 2 terms. For p = 1, this number can be seen to be
the Ly = 1 special case of a general formula in (3.2.15) of Ref. [18] for the join of K1 with
a width-Ly cyclic strip.

For the weighted-set chromatic polynomial, we generalize this coloring method as fol-
lows. Consider first K1 + G. There are two possible types of choices for the color to be
assigned to the vertex of K1. One type is to choose this color to lie in the set Is . There are s

ways to make this choice, and each gets a weighting factor of w. For each choice, one then
performs the proper coloring of the vertices of G with the remaining q − 1 colors, of which
only s − 1 can be used from the set Is ; this is determined by Ph(G,q − 1, s − 1,w). The
second type of coloring is to choose the color assigned to the K1 vertex to lie in the orthog-
onal set I⊥

s . There are (q − s) ways to make this choice, and since this is not the weighted
set, there is no weighting factor of w. For each such choice, one then performs the proper
coloring of the vertices of G with the remaining q − 1 colors, of which all s colors in the set
Is are available, but only q − s − 1 colors in the orthogonal set I⊥

s are available. This yields
the result

Ph(K1 + G,q, s,w) = swPh(G,q − 1, s − 1,w) + (q − s)Ph(G,q − 1, s,w). (7.5)

To calculate Ph(Kp +G,q, s,w) for a given graph G, one first carries out the proper color-
ing of K1 + G, using the result (7.5). One then joins the next vertex of Kp to K1 + G to get
K2 + G, using the relation K1 + (Kr + G) = Kr+1 + G and iteratively applies (7.5). One
continues in this manner to carry out the proper coloring of the full join Kp +G. This yields

Ph(Kp + G,q, s,w) =
p∑

�=0

βKp,�(q, s)Ph(G,q − p, s − �,w)w�. (7.6)

Utilizing this coloring method, we have calculated Ph(Wh
(p)
n , q, s,w) for arbitrary n.

Let us define

a(p,q, s,w) = q − s − (p + 1) + (s − 1)w = q − (p + 1) + s(w − 1) − w (7.7)

and

λWh(p),�,±(q, s,w) = 1

2

[

a(p,q, s − �,w) ± [a(p,q, s − �,w)2 + 4w(q − p − 1)]1/2

]

for 0 ≤ � ≤ p. (7.8)

We note that for � = 0, these λWh(p),�,±(q, s,w) are equal to the v = −1 special case of
λZ,1,0,j given in (5.3) of our earlier Ref. [4] for the circuit graph with the replacement of q

by q − p (and with j = 1,2 corresponding to ± here). This is in accord with the fact that
the effect of the join of Kp with G is that the proper q-coloring of G can only use q − p of
the original q colors. We define two additional terms that do not depend on q or s,

λWh(p),2p+3 = −w (7.9)
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and

λWh(p),2p+4 = −1. (7.10)

The total number of λ’s for Ph(Wh
(p)
n , q, s,w) is thus

NPh(Wh(p)),λ = 2(p + 2). (7.11)

Note that in contrast to the unweighted chromatic polynomial of Wh
(p)
n , where the number

of λ’s, NP(Wh(p)),λ = 2, is independent of p, here this number depends on p. In terms of

these quantities, we find, for the weighted-set chromatic polynomial for Wh
(p)
n , the result

Ph(Wh(p)
n , q, s,w) =

p∑

�=0

βKp,�(q, s)

[

[λWh(p),�,+(q, s,w)]n−p

+ [λWh(p),�,−(q, s,w)]n−p

]

w�

+
[

p∑

�=0

βKp,�(q, s)(s − � − 1)w�

]

(−w)n−p

+
[

p∑

�=0

βKp,�(q, s)(q − s − p + � − 1)w�

]

(−1)n−p. (7.12)

This formula applies for integer p ≥ 1 and also for p = 0 if one sets βKp,�(q, s) ≡ δ�,0 for
p = 0. It can be checked that for p = 0, (7.12) reduces to our result for Ph(Cn, q, s,w)

given as the special v = −1 case of (5.3)–(5.5) in Ref. [4]. It can also be verified that for
p = 1 and s = 1, (7.12) reduces to the result given for this case in (3.30)–(3.32) in Ref. [3].
Furthermore, since the graph Wh

(1)

4 = K1 + K3 = K4, it follows that Ph(Wh
(1)

4 , q, s,w) =
Ph(K4, q, s,w). The symmetry (2.13) is realized as follows: the summation on the first line
of (7.12) goes into itself, while the sum of the expressions on the two subsequent lines of
(7.12) transforms into itself with the replacement of w by w−1 in these expressions and
the prefactor wn appearing overall. One could also study Z(Wh

(p)
n , q, s, v,w), but we have

focused here on Ph(Wh(p), q, s,w), since its calculation can be performed by combinatoric
methods associated with the proper q-coloring condition. We give some explicit examples of
set-weighted chromatic polynomials Ph(Wh

(p)
n , q, s,w) obtained from our general formula

(7.12) in the first appendix.
Following our notation in Ref. [4] and earlier works, the n → ∞ limit of a family of

n-vertex graphs Gn is denoted {G} and the continuous accumulation set of the zeros of
Ph(Gn, q, s,w) in the complex q plane is denoted Bq . For recursive families of graphs, this
locus is determined as the solution of the equality in magnitude of two (or more) λ’s of
dominant magnitude, as a function of q (with other variables held fixed). The other loci Bv ,
etc. are defined in an analogous manner. These loci are typically comprised of curves and
possible line segments. For studies of the n → ∞ limit of chromatic polynomials and their
generalization to weighted-set chromatic polynomials, the locus Bq is of primary interest.
Depending on the family of graphs, the locus Bq may or may not cross the real q axis. If it
does cross the real q axis, we denote the maximum (finite) point at which it crosses this axis
as qc . Extending our previous result for the p = 0 case of {G} = {Wh(p)} in (7.17) of Ref.
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[4], we find the following result for general p:

qc = 2 + p + s(1 − w)

1 + w
for {G} = {Wh(p)} and 0 ≤ w ≤ 1 and 1 ≤ s ≤ p + 2. (7.13)

Regarding connections of this general formula to previously determined special cases, (i) for
s = 0 or w = 1, this reduces to the result qc = 2 + p for the n → ∞ limit of the chromatic
polynomial P (Wh(p), q) given in (22) of Ref. [19]; (ii) for p = 0, this reduces to the result
for the n → ∞ of Ph(Cn, q, s,w) given in (7.17) of Ref. [4], and (iii) for s = 1, this reduces
to the result for the n → ∞ limit of Ph(Wh(1), q,1,w) given in (10.1) of Ref. [3] (with the
obvious notation change {C} → {Wh}). For the relevant interval 0 ≤ w ≤ 1, the value of qc

in (7.13) is (a) greater than the value qc = 2 + p for the unweighted chromatic polynomial;
(b) a monotonically increasing function of s for fixed w in this DFSCP interval; and (c) a
monotonically decreasing function of w. These properties are consequences of the greater
suppression of color values in the set Is as w decreases in the DFSCP interval, finally re-
stricting the vertex coloring to use colors from the orthogonal set I⊥

s as w reaches 0. Thus,
as w decreases from 1 to 0, qc increases continuously from 2 + p to 2 + p + s. In contrast,
the left-hand part of the boundary locus Bq changes discontinuously; as w decreases by an
arbitrarily small amount below 1, the point on the left where Bq crosses the real q axis jumps
discontinuously from q = p to q = p + s. This behavior is in agreement with the fact that
in the two limits w = 1 and w = 0, Bq is comprised, respectively, of the unit circle centered
at q = 1 + p and the unit circle centered at q = 1 + s + p. The change in the nature of the
locus for s > 2 + p follows via the corresponding generalization of the analysis in Ref. [4]
to p ≥ 0.

8 Effect of Multiple Edges in a Graph

Consider a loopless graph G = (V ,E). Replace each edge with � edges joining the same
pair of vertices and denote the resultant graph as G�e . Then the following is a theorem:

Z(G�e, q, s, v,w) = Z(G,q, s, v�,w), where v� = (v + 1)� − 1. (8.1)

Clearly, if v = 0, then Z(G,q, s, v,w) = (q − s + sw)n, independent of the edge set E of G.
Hence, in this case, the operation of replacing each edge by � copies of the edge has no effect
on the partition function. This is seen at an analytic level via the property that if v = 0, then
also v� = 0 for any (positive integer) �. Further, for v = −1, where Z(G,q, s, v,w) reduces
to the weighted-set chromatic polynomial Ph(G,q, s,w), the proper q-coloring constraint
is the same regardless of whether a given edge is replicated or not, so again the replication
does not affect this polynomial. In (8.1), this follows because if v = −1, then also v� = −1
for any (positive integer) �. Combining these results, we note that

v� − v contains the factor v(v + 1). (8.2)

Consequently, for any graph G with at least one edge (so that the operation of edge replica-
tion is not vacuous) and for positive integer �,

Z(G�e, q, s, v,w) − Z(G,q, s, v�,w) contains the factor v(v + 1). (8.3)
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9 Effects of Deletion and Contraction of Edges

As noted above in Sect. 2, in general, neither Z(G,q, s, v,w) nor Ph(G,q, s,w) satisfies
the respective deletion-contraction relation. It is of interest to investigate how these polyno-
mials deviate from the deletion-contraction relation. A natural measure of this deviation for
a graph G is [4]

[�Z(G,e, q, s, v,w)]DCR = Z(G,q, s, v,w)−
[
Z(G−e, q, s, v,w)+vZ(G/e, q, s, v,w)

]
.

(9.1)
We also define [�Ph(G,e, q, s,w)]DCR ≡ [�Z(G,e, q, s,−1,w)]DCR. We showed that [4]

[�Z(G,e, q, s, v,w)]DCR contains the factor svw(w − 1), (9.2)

and hence [�Ph(G,e, q, s,w)]DCR contains a factor of sw(w − 1). A particularly elegant
general formula can be obtained for this deviation in the case of the family of star graphs,
Sn, i.e., graphs consisting of one central vertex with n − 1 other vertices, each of which is
only connected to this central vertex. We find (for the nontrivial range n ≥ 2)

[�Z(Sn, q, s, v,w)]DCR = svw(w − 1)[q + s(w − 1) + wv]n−2. (9.3)

10 Cycle Measure

In view of the relation (2.30), one can define the following function, which serves as a
measure of the presence of cycles in a graph G:

[�Z(G,q, s, v,w)]cycles = Z(G,q, s, v,w) − snZ(G,q ′,1, v′,w), (10.1)

where q ′ and v′ were defined in (2.29). Clearly, this difference vanishes if s = 1, so, since it
is a rational function,

[�Z(G,q, s, v,w)]cycles contains the factor (s − 1). (10.2)

In Ref. [4] we derived the result

[�Z(Cn, q, s, v,w)]cycles = (s − 1)unv
n

s
= (s − 1)(q − s + swn)vn

s
. (10.3)

This reflects the fact that Cn contains one cycle.
Here we present another example of this difference function. Let us define a path graph

with n vertices and each edge replaced by � edges joining the same adjacent vertices as Ln,�.
Note that L2,2 = C2. For L3,2 we calculate

[�Z(L3,2, q, s, v,w)]cycles

= (s − 1)v2

s

[

s(2s2 + v2s + 4vs + v2)w3 + 2s2(q − s)w2 + 2s2(q − s)w

+ (q − s)(−2s2 + v2s + 4vs + 2sq + v2)

]

. (10.4)
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11 Use of Z(G,q, s, v,w) and Ph(G,q, s,w) to Distinguish Between
Tutte-Equivalent and Chromatically Equivalent Graphs

11.1 General

Two graphs G and H are defined to be (i) chromatically equivalent if they have the same
chromatic polynomial, and (ii) Tutte-equivalent if they have the same Tutte polynomial, or
equivalently, zero-field Potts model partition function. Here the Tutte polynomial T (G,x, y)

of a graph G is defined as

T (G,x, y) =
∑

G′⊆G

(x − 1)k(G′)−k(G)(y − 1)c(G′), (11.1)

where G′ is a spanning subgraph of G (and c(G′) and k(G′) were defined above as, respec-
tively, the number of linearly independent cycles and the number of connected components
of G′). This is equivalent to the zero-field Potts model partition function, via the relation

Z(G,q, v) = (x − 1)k(G)(y − 1)nT (G,x, y), (11.2)

where y = v + 1 as in (1.3) and x = 1 + (q/v). The Tutte polynomial is of considerable
interest in mathematical graph theory, since it encodes much information about a graph.
However, although it distinguishes between many graphs, there exist other pairs of graphs
G and H that are different but have the same Tutte polynomial. An important property of
our generalized field-dependent Potts model partition function Z(G,q, s, v,w) is that it can
distinguish between many Tutte-equivalent graphs. Similarly, an important property of the
weighted-set chromatic polynomial is that it can distinguish between many chromatically
equivalent graphs. We study this further in this section. This property is true for all w and s

values except the special values w = 1, w = 0, s = 0, and s = q , for which Z(G,q, s, v,w)

is reducible to a zero-field Potts partition function (as well as the trivial case v = 0) and
similarly for Ph(G,q, s,w). reducible to a chromatic polynomial. In Ref. [4] we proved
that for any two Tutte-equivalent graphs G and H ,

Z(G,q, s, v,w) − Z(H,q, s, v,w) contains the factor s(q − s)vw(w − 1). (11.3)

In the following, we will generally phrase our analysis in terms of how the field-dependent
Potts partition function distinguishes between Tutte-equivalent graphs; the special cases of
the various expressions for v = −1 then show how the weighted-set chromatic polynomial
distinguishes between different chromatically equivalent graphs.

11.2 Tree Graphs

A class of Tutte-equivalent (and, hence also chromatically equivalent) graphs of particular
interest is comprised of tree graphs, generically denoted Tn. For these, T (Tn, x, y) = xn−1,
so

Z(Tn, q, v) = q(q + v)n−1 and P (Tn, q) = q(q − 1)n−1. (11.4)

Note that e(Tn) = n−1 (and a tree graph cannot have any multiple edges). There is only one
tree graph with n = 1 vertex, one with n = 2 vertices, and one with n = 3 vertices. There
are two different tree graphs with n = 4 vertices, namely the path graph, L4, and the star
graph, S4. Enumerations of tree graphs with larger numbers of vertices are given, e.g., in
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Refs. [20, 21]. Let us consider two different n-vertex tree graphs (which thus have n ≥ 4),
denoted Gt and Ht . Since these have the same number of edges, inspection of the general
equation (2.9) shows that for the difference Z(Gt, q, s, v,w) − Z(Ht , q, s, v,w), not only
the v0 and vn terms, but also the v1 terms cancel. Hence,

Z(Gt, q, s, v,w) − Z(Ht, q, s, v,w) contains the factor v2. (11.5)

We recall that Is ⊆ Iq , so that 0 ≤ s ≤ q , and that w ≥ 0, as follows for any physical
field H . These properties will be understood implicitly in the following. As preparation
for the derivation of an inequality concerning Z(Gt, q, s, v,w) for Sn and Ln graphs, it
is useful to give some explicit examples. Let us consider the two tree graphs with n = 4
vertices, namely S4 and L4. In the following, we will usually omit the arguments q, s, v,w

in Z(G,q, s, v,w) for brevity of notation. We have given exact expressions for Z(Sn) in
(3.5) of Ref. [4] and for Z(Ln) in (5.5) above. For our present purposes, we focus on the
expressions in terms of the spanning subgraph expansion. For S4, this is

Z(S4) = u4
1 + 3vu2u

2
1 + 3v2u3u1 + v3u4, (11.6)

while for L4 we have

Z(L4) = u4
1 + 3vu2u

2
1 + v2(2u3u1 + u2

2) + v3u4. (11.7)

The difference in the structure of the term proportional to v2 arises from the differences in
the spanning subgraphs with two edges in S4 and L4. Hence,

Z(S4) − Z(L4) = v2(u3u1 − u2
2) = v2s(q − s)w(w − 1)2. (11.8)

Since the last expression will appear as a factor in the differences Z(Gt) − Z(Ht) to be
presented below, we give it a symbol:

μ ≡ s(q − s)v2w(w − 1)2 (11.9)

and note that

μ ≥ 0, (11.10)

so that Z(S4) − Z(L4) ≥ 0.
There are three different tree graphs with n = 5 vertices: S5, L5, and a graph that we

denote as Y5, which has the form of a Y , with the vertical part made up of three vertices
and two edges (shown in Fig. 1 of Ref. [3]). The graph Yn is the generalization of this graph
in which the vertical part is comprised of n − 2 vertices forming a path graph Pn−2 (so
that Y4 = S4). The spanning subgraph expansions for these graphs, in order of decreasing
maximal vertex degree, are

Z(S5) = u5
1 + 4vu2u

3
1 + 6v2u3u

2
1 + 4v3u4u1 + v4u5, (11.11)

Z(Y5) = u5
1 + 4vu2u

3
1 + 2v2(2u3u

2
1 + u2

2u1) + v3(3u4u1 + u3u2) + v4u5, (11.12)

and

Z(L5) = u5
1 + 4vu2u

3
1 + 3v2(u3u

2
1 + u2

2u1) + 2v3(u4u1 + u3u2) + v4u5. (11.13)
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Thus, for the differences, we have

Z(S5) − Z(Y5) = 2v2(u3u
2
1 − u2

2u1) + v3(u4u1 − u3u2)

= μ[2u1 + v(w + 1)], (11.14)

Z(S5) − Z(L5) = 3v2(u3u
2
1 − u2

2u1) + 2v3(u4u1 − u3u2)

= μ[3u1 + 2v(w + 1)], (11.15)

and

Z(Y5) − Z(L5) = v2(u3u
2
1 − u2

2u1) + v3(u4u1 − u3u2)

= μ[u1 + v(w + 1)]. (11.16)

Now (remembering that 0 ≤ s ≤ q and w ≥ 0), for the ferromagnetic range v ≥ 0, for non-
negative a and b, one has

au1 + bv(w + 1) ≥ 0. (11.17)

Hence, for the ferromagnetic case, each of the differences Z(S5) − Z(Y5), Z(S5) − Z(L5),
and Z(Y5) − Z(L5) is non-negative.

From these explicit examples, one sees that the origin of these inequalities can be traced
to inequalities among products of the ur ’s. We proceed to prove two lemmas and then a
general theorem. Our first lemma is

un−1u1 ≥ un−�u� for n ≥ 2 and 2 ≤ � ≤ n − 2. (11.18)

To verify this lemma, we expand and factor the given expression:

un−1u1 − un−�u� = s(q − s)w(1 + wn−2 − w�−1 − wn−�−1)

= s(q − s)w(wn−�−1 − 1)(w�−1 − 1)

= s(q − s)w(w − 1)2

[
n−�−2∑

i=0

wi

][
�−2∑

j=0

wj

]

≥ 0. (11.19)

This lemma shows that the difference u3u1 − u2
2 that appears multiplying v2 in (11.8),

(11.14), (11.15), and (11.16) is nonnegative, and similarly that the difference u4u1 − u3u2

that appears multiplying v3 in the last three of these equations is nonnegative.
Differences of the form Z(Gt) − Z(Ht) for higher values of n involve differences of

higher products of ur factors, and there is an analogous inequality for these products. We
prove this as a second lemma. Let us consider a generic term in (1.4), for the spanning
subgraph G′ = ⊕

G′
i with k(G′) connected components, G′

i , each with n(G′
i ) vertices. This

has the form (2.4) satisfying the relation (2.5). Our second lemma is, with � = n−k(G′)+1,

u�u
n−�
1 ≥

k(G′)∏

j=1

un(G′
j
) for n ≥ 2 and 1 ≤ � ≤ n, i.e., 1 ≤ k(G′) ≤ n. (11.20)

For example, for the case n = 6, this lemma yields the inequalities u4u
2
1 ≥ u2

3, u4u
2
1 ≥ u3

2,
and u4u

2
1 ≥ u4u2. This lemma is proved by the same method as Lemma 1.
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Combining the expression for Z(Sn, q, s, v,w) in the first line of (3.21) with our other
results above, we have the following theorem: For the ferromagnetic case,

Z(Sn, q, s, v,w) − Z(Tn, q, s, v,w) ≥ 0 for v ≥ 0 (11.21)

for any tree graph Tn. This is proved by applying the two lemmas above to the terms in the
spanning subgraph expansions of these partition functions for Sn and a generic tree graph Tn.
In the second appendix we give further explicit results for differences of field-dependent
partition functions for tree graphs with n = 6 vertices.

The difference Z(Y5) − Z(L5) in (11.16) (where we omit the arguments for brevity of
notation) can also be understood using the recursive relation for n ≥ 5:

Z(Yn) − Z(Ln) =
n−4∑

j=1

vj−1uj [Z(Yn−j ) − Z(Ln−j )]

+ vn−4

(
n−4∑

j=0

wj

)

[Z(Y4) − Z(L4)], (11.22)

where Z(Y4) − Z(L4) = Z(S4) − Z(L4) = μ was given in (11.8). For the ferromagnetic
range v ≥ 0, each term on the right-hand side of (11.22) is nonnegative, and hence this
proves the inequality

Z(Yn, q, s, v,w) − Z(Ln, q, s, v,w) ≥ 0 for v ≥ 0. (11.23)

Combining (11.21) and (11.23), we have

Z(Sn, q, s, v,w) ≥ Z(Yn, q, s, v,w) ≥ Z(Ln, q, s, v,w) for v ≥ 0. (11.24)

11.3 Properties of Graphs Intersecting in a Complete Graph

One class of chromatically equivalent graphs consists of graphs whose chromatic polynomi-
als can be shown to be equal by an application of the complete graph intersection theorem.
We recall this theorem. Let us consider a graph G that has the property of being composed of
the union of two subgraphs, G = G1 ∪ G2, such that G1 ∩ G2 = Km for some m. In the rest
of this subsection, we assume that G has this property. Then P (G,q) satisfies the relation

P (G,q) = P (G1, q)P (G2, q)

P (Km,q)
. (11.25)

This is sometimes called the complete-graph intersection theorem (KIT) for chromatic
polynomials. In contrast, in general, Ph(G,q, s,w) is not equal to Ph(G1, q, s,w)

Ph(G2, q, s,w)/Ph(Km,q, s,w). This equality holds only for the four values w = 1,
w = 0, s = 0, and s = q where Ph(G,q, s,w) reduces to a chromatic polynomial. As a
measure of the deviation from equality, we define

[�Ph(G,q, s,w)]KIT ≡ Ph(G,q, s,w) − Ph(G1, q, s,w)Ph(G2, q, s,w)

Ph(Km,q, s,w)
. (11.26)

Let us consider a graph with n = 5 vertices, denoted GLKL, comprised of a triangle K ≡
K3 with two line segments L, each of length one edge, emanating outward from two vertices
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of the triangle. This graph LKL has n = 5, e = 5 and c = 1. A second graph, GKLL, also
with n = 5, e = 5 and c = 1, is comprised of a triangle K3 with a line segment two edges
long emanating outward from one vertex of the triangle. These graphs are Tutte-equivalent,
with

T (GLKL, x, y) = T (GKLL, x, y) = x2(x + x2 + y), (11.27)

or equivalently,

Z(GLKL, q, v) = Z(GKLL, q, v) = q(q + v)(q2 + 3qv + 3v2 + v3). (11.28)

It follows that these graphs are also chromatically equivalent, with chromatic polynomial

P (GLKL, q) = P (GKLL, q) = q(q − 1)3(q − 2). (11.29)

In contrast, the field-dependent Potts partition function and the weighted-set chromatic poly-
nomial successfully distinguish between these graphs. For the LKL graph we calculate

Z(GLKL, q, s, v,w) = Z(GLKL, s, v)w5 + s(q − s)(s + v)(5s2 + 10sv + 7v2 + 2v3)w4

+ s(q − s)

[

(q − s + 2)v3 + (7q − s)v2 + 10s2(q − s − v)

+ 15sqv

]

w3 + s(q − s)

[

(s + 2)v3 + (6q + s)v2

+ 10(q − s)2(s − v) + 15(q − s)qv

]

w2 + s(q − s)(q − s + v)

×
[

5(q − s)2 + 10(q − s)v + 7v2 + 2v3

]

w

+ Z(GLKL, q − s, v) (11.30)

where Z(GLKL, q, v) = Z(GKLL, q, v) was given above in (11.28). For the GKLL graph we
calculate

Z(GKLL, q, s, v,w) = Z(GKLL, s, v)w5

+ s(q − s)

[

5s3 + 15s2v + 16sv2 + 2sv3 + 5v3 + v4

]

w4

+ s(q − s)

[

−10s3 + 10s2(q − v) + sv(15q + 2v − v2)

+ 6qv2 + qv3 + 4v3 + v4

]

w3 + s(q − s)

[

−10(q − s)3

+ 10(q − s)2(q − v) + (q − s)v(15q + 2v − v2)

+ 6qv2 + qv3 + 4v3 + v4

]

w2 + s(q − s)

[

5(q − s)3 + 15(q − s)2v

+ 16(q − s)v2 + 2(q − s)v3 + 5v3 + v4

]

w

+ Z(GKLL, q − s, v). (11.31)
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Thus, Z(GLKL, q, s, v,w) is not, in general, equal to Z(GKLL, q, s, v,w) and, taking the
v = −1 special case, Ph(GLKL, q, s,w) is not, in general, equal to Ph(GKLL, q, s,w). For
the differences, we find

Z(GLKL, q, s, v,w) − Z(GKLL, q, s, v,w)

= μ

[

s(w − 1) + (1 + w)v2 + 2wv + q + 2v

]

(11.32)

and thus

Ph(GLKL, q, s,w) − Ph(GKLL, q, s,w) = s(q − s)w(w − 1)2

[

s(w − 1) + q − 1 − w

]

.

(11.33)
These calculations provide another illustration of how Z(G,q, s, v,w) can distinguish be-
tween different graphs that yield the same Tutte polynomial, and how Ph(G,q, s,w) can
distinguish between different graphs that yield the same chromatic polynomial.

In the context of graphs that can be decomposed into the union of subgraphs that intersect
in a complete graph, it is also useful to calculate Z and Ph for the graph consisting of two
K3’s meeting at a common vertex, ��, denoted GKK . This graph has n = 5, e = 6, and c = 2.
The Tutte polynomial is T (GKK, x, y) = (x + x2 + y)2, or equivalently

Z(GKK, q, v) = Z(K3, q, v)2

Z(K1, q, v)
= q(q2 + 3qv + 3v2 + v3)2 (11.34)

so that

P (GKK, q) = P (K3, q)2

P (K1, q)
= q(q − 1)2(q − 2)2. (11.35)

Note that these polynomials factorize. This is not the case with Z(GKK, q, s, v,w) and
Ph(GKK, q, s,w). We calculate

Z(GKK, q, s, v,w) = Z(GKK, s, v)w5 + s(q − s)(s + v)(5s2 + 13sv + 12v2 + 4v3)w4

+ 2s(q − s)

[

−5s3 + s2(5q − 6v) + sv(9q − v2) + 5qv2

+ (q + 3)v3 + v4

]

w3 + 2s(q − s)

[

−5(q − s)3 + (q − s)2(5q − 6v)

+ (q − s)v(9q − v2) + 5qv2 + (q + 3)v3 + v4

]

w2

+ s(q − s)(q − s + v)

[

5(q − s)2 + 13(q − s)v + 12v2 + 4v3

]

w

+ Z(GKK, q − s, v) (11.36)

and hence

Ph(GKK, q, s,w) = P (GKK, s)w5 + s(q − s)(s − 1)2(5s − 8)w4

+ 2s(q − s)(s − 1)

[

5s(q − s) + s − 4q + 2

]

w3
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+ 2s(q − s)(q − s − 1)

[

5s(q − s) + (q − s) − 4q + 2

]

w2

+ s(q − s)(q − s − 1)2

[

5(q − s) − 8

]

w + P (GKK, q − s).

(11.37)

This example thus further illustrates how the factorization properties of the field-dependent
Potts model partition function and set-weighted chromatic polynomial differ from those of
the zero-field Potts model partition function and (unweighted) chromatic polynomial.

12 Conclusions

In this paper we have presented exact results on Z(G,q, s, v,w), the partition function of
the Potts model in an external generalized magnetic field that favors or disfavors spin values
in a subset Is of the full set Iq on various families of graphs G, and on Ph(G,q, s,w), the
weighted-set chromatic polynomial. In particular, we have presented new general calcula-
tions of Z(G,q, s, v,w) for the case of path (line) graphs Ln and Ph(Wh

(p)
n , q, s,w) for

p-wheel graphs Wh
(p)
n . We have discussed various features of our exact results for path, line,

circuit, star, and complete graphs. We have derived powerful new upper and lower bounds
on Z(G,q, s, v,w) in terms of zero-field Potts partition functions with certain transformed
arguments. We have also proved inequalities for the field-dependent Potts partition function
on different families of tree graphs. An important property of Z(G,q, s, v,w) is the fact that
it can distinguish between Tutte-equivalent graphs, and similarly, Ph(G,q, s,w) can distin-
guish between certain chromatically equivalent graphs. We have elucidated this property
with our inequalities and with explicit calculations. Some new results for quantities such as
f ({G}, q, s, v,w), 
({G}, q, s,w), and qc defined in the n → ∞ limits of recursive graph
families have also been given.

There are a number of interesting directions for future study. One direction is to investi-
gate additional graph-theoretic applications of Z(G,q, s, v,w) and Ph(G,q, s,w). Second,
it is clearly valuable to calculate Z(G,q, s, v,w) and Ph(G,q, s,w) for other families of
graphs, in particular, recursive ones such as lattice strips and study their properties. We
have described some of the interesting differences in thermodynamic behavior between our
model with a generalized external magnetic field and the Potts model with a conventional
magnetic field. It would be worthwhile to explore these differences further for various values
of q , s, H , and temperature on lattices in d ≥ 2 dimensions, using methods such as series
expansions and Monte Carlo simulations.

Acknowledgements R.S. thanks Prof. S.-C. Chang for valuable collaborations on Refs. [1–3]. The present
research was partly supported by the grant NSF-PHY-06-53342.

Appendix 1

In this appendix we present some explicit expressions for the set-weighted chromatic poly-
nomials Ph(Wh

(p)
n , q, s,w) obtained from our general formula (7.12). We begin with case

p = 1, i.e., the family of wheel graphs, Wh(1)
n . The first nondegenerate case is n = 4, for

which Wh
(1)

4 = K4, as noted (cf. (6.6)). For n = 5, we have

Ph(Wh
(1)

5 , q, s,w) = s(s − 1)(s − 2)(s2 − 5s + 7)w5
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+ s(s − 1)[5s2 − 19(s − 1)](q − s)w4

+ 2s(s − 1)(q − s)(5qs − 7q − 5s2 + 3s + 6)w3

+ 2s(q − s)(q − s − 1)(−4q + 5qs − 5s2 + 6 − 3s)w2

+ s(q − s)(q − s − 1)[5(q − s)2 − 19(q − s − 1)]w
+ (q − s)(q − s − 1)(q − s − 2)[(q − s)2 − 5(q − s) + 7].

(13.1)

For n = 6,

Ph(Wh
(1)

6 , q, s,w) = s(s − 1)(s − 2)(s − 3)(s2 − 4s + 5)w6

+ 2s(s − 1)(s − 2)[3s2 − 11(s − 1)](q − s)w5

+ 5s(s − 1)(q − s)(3qs2 − 9qs + 7q − 3s3 + 7s2 − s − 5)w4

+ 20s(s − 1)2(q − s)(q − s − 1)2w3

+ 5s(q − s)(q − s − 1)(3q2s − 2q2 + 6q − 6qs2 − 5qs + 3s3

+ 7s2 − 5 + s)w2 + 2s(q − s)(q − s − 1)(q − s − 2)[(3(q − s)2

− 11(q − s − 1)]w + (q − s)(q − s − 1)(q − s − 2)

× (q − s − 3)[(q − s)2 − 4(q − s) + 5]. (13.2)

For the family of p-wheel graphs with p = 2, i.e., Wh(2)
n , we first note that Wh

(2)

4 =
K2 + K2 = K4 and Wh

(2)

5 = K2 + K3 = K5, both of which are subsumed by our general
formula (6.2). For Wh

(2)

6 our general result (7.12) yields

Ph(Wh
(2)

6 , q, s,w) = s(s − 1)(s − 2)(s − 3)(s2 − 7s + 13)w6

+ 2s(s − 1)(s − 2)(3s2 − 17s + 25)(q − s)w5

+ s(s − 1)(q − s)(15qs2 − 63qs + 67q − 15s3 + 50s2

− 12s − 59)w4 + 4s(s − 1)(q − s)(q − s − 1)[5s(q − s)

− 8q + 13]w3 + s(q − s)(q − s − 1)(15q2s − 13q2 − 37qs

+ 55q − 30qs2 + 12s + 15s3 + 50s2 − 59)w2

+ 2s(q − s)(q − s − 1)(q − s − 2)[3(q − s)2 − 17(q − s) + 25]w
+ (q − s)(q − s − 1)(q − s − 2)(q − s − 3)[(q − s)2

− 7(q − s) + 13]. (13.3)

Explicit examples for higher values of p and n can be calculated in a similar manner from
our general formula (7.12).

Appendix 2

As discussed in the text, an important property of Z(G,q, s, v,w) is that it can distin-
guish between different Tutte-equivalent graphs, and a similarly important property of
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Fig. 1 Tree graphs with n = 6 vertices

Ph(G,q, s,w) is that it can distinguish between many chromatically equivalent graphs.
Tree graphs provide a basic context in which to explore this property, since any two tree
graphs are both chromatically equivalent and Tutte-equivalent. In the present text and in
earlier work we have given Z(G,q, s, v,w) for tree graphs up to and including n = 5
vertices. Here we give results for tree graphs with n = 6 vertices. There are six such
tree graphs, as shown in Fig. 6 of Ref. [3], reproduced here as Fig. 1 for the reader’s
convenience, labelled (i) Ln, (ii) Y6, (iii) isoY6, (iv) H6, (v) Cr6, and (vi) S6. These are
listed in order of increasing maximal vertex degree �. There are thus

(6
2

) = 15 differ-
ences of Z(G,q, s, v,w) polynomials for these six graphs. We list these below, as dif-
ferences with respect to the graph with highest maximal vertex degree, S6 first, then
with respect to the graph with next-highest maximal vertex degree, Cr6, and so forth.
Furthermore, since the arguments are the same for all of the partition functions, we
omit them, writing Z(G,q, s, v,w) − Z(H,q, s, v,w) ≡ Z(G) − Z(H). The differences
are

Z(S6) − Z(Cr6) = μ

[

(3s2 + 3sv + v2)w2 + {6s(q − s) + 3qv + v2}w

+ {3(q − s)2 + 3(q − s)v + v2}
]

(14.1)

Z(S6) − Z(H6) = μ[(2s + v)w + {2(q − s) + v}]2 (14.2)

Z(S6) − Z(IsoY6) = μ

[

(5s2 + 6sv + 2v2)w2 + {10s(q − s)

+ 5qv + 2v2}w + {5(q − s)2 + 6(q − s)v + 2v2}
]

(14.3)

Z(S6) − Z(Y6) = μ

[

(5s2 + 6sv + 2v2)w2 + {10s(q − s)

+ 6qv + 3v2}w + {5(q − s)2 + 6(q − s)v + 2v2}
]

(14.4)

Z(S6) − Z(L6) = μ

[

(6s2 + 8sv + 3v2)w2 + {12s(q − s)
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+ 7qv + 4v2}w + {6(q − s)2 + 8(q − s)v + 3v2}
]

(14.5)

Z(Cr6) − Z(H6) = μ
[
q + s(w − 1) + v

][
q + s(w − 1) + vw

]

= μ

[

s(s + v)w2 + {2s(q − s) + v(q + v)}w

+ (q − s)(q − s + v)

]

(14.6)

Z(Cr6) − Z(IsoY6) = μ

[

(s + v)(2s + v)w2 + (2s + v){2(q − s) + v}w

+ (q − s + v){2(q − s) + v}
]

(14.7)

Z(Cr6) − Z(Y6) = μ
[
2{q + s(w − 1)} + v(w + 1)

]

×
[
q + s(w − 1) + v(w + 1)

]

= μ

[

(s + v)(2s + v)w2 + {4s(q − s) + 3qv + 2v2}w

+ (q − s + v){2(q − s) + v}
]

(14.8)

Z(Cr6) − Z(L6) = μ

[

(s + v)(3s + 2v)w2 + {6s(q − s) + 4qv + 3v2}w

+ (q − s + v){3(q − s) + 2v}
]

(14.9)

Z(H6) − Z(IsoY6) = μ

[

(s + v)2w2 + {2s(q − s) + qv}w

+ (q − s + v)2

]

(14.10)

Z(H6) − Z(Y6) = μ

[

(s + v)2w2 + {2s(q − s) + 2qv + v2}w

+ (q − s + v)2

]

(14.11)

Z(H6) − Z(L6) = μ

[

2(s + v)2w2 + {4s(q − s) + 3qv + 2v2}w

+ 2(q − s + v)2

]

(14.12)

Z(IsoY6) − Z(Y6) = μwv(q + v) = s(q − s)v3(q + v)[w(w − 1)]2 (14.13)

Z(IsoY6) − Z(L6) = μ
[
q + s(w − 1) + v(w + 1)

]2
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= μ
[
(s + v)w + q − s + v

]2
(14.14)

Z(Y6) − Z(L6) = μ

[

(s + v)2w2 + {2s(q − s) + v(q + v)}w

+ (q − s + v)2

]

(14.15)

In addition to our theorems (11.21) and (11.23), we observe that (for 0 ≤ s ≤ q and w ≥ 0)
all of these differences are non-negative for the ferromagnetic range v ≥ 0.
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